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Summary 

Using some features of the fluctuation dissipation theorem 
and a simple method for the description of Brownian motion of 
chain segments it is shown that two different reptation times 
exist (for shearing and diffusion, respectively) if the entang- 
lement points have a sufficient fast and large scale motion that 
does not destroy the network topology. Viscosity and diffusion 
coefficient are compatibly obtained as q~N3"Sand D~N -2 in 
polymer melts and concentrated systems of long chain molecules. 

Introduction 
Reptation times T R for tube models in entangled systems (DE 

GENNES 1971, EDWARDS 1967,DAOUD and DE GENNES 1979) are very 
long for long polymer chains. We must therefore check if the 
viscosity D or the (self) diffusion coefficient D are influenced 
by other slow mobilities in the rubber plateau zone. 

Entanglement points (shortly E-points) are considered as re- 
presentatives for topological constraints due to the entangle- 
ment network. Its topology can only be varied by the movement 
of the chain ends (tube renewal). But invariant topology does 
not mean that the E-points are fixed in space, see Fig. I. 
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Figure i. Coiling mobility of a chain in an entanglement network 

RICHTER et al. (1981) suggested, discussing neutron scattering 
experiments (RICHTER et al. 1981, HIGGINS et al. 1981), that 
E-points should have a certain mobility as the chains showed a 
Rouse like mobility at least up to the range of 4 run. We assume 
that such a mobility does not vary the topology and corresponds 
therefore to Fig.1. As suggested by this Figure, imagined in 
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3 dimensions, such a mobility would be increased if the E-points 
can slip along the chains. Large scale rearrangements of chains 
or their parts are possible as can be seen from pictures of 
larger regions as compared to Fig.l. 

Let us define a "coiling time" T E as the time necessary for 
a new "geometric" arrangement of a chain due to the E-point 
mobility in dimensions of the radius of the chain, R o. (By the 
way, T E has only a simple meaning if T E <TR, otherwise the 
identification of E-points would be difficult.) 

This note is to show that the viscosity is influenced by the 
mobility of E-points if such a coiling time T E<T W exists. A 
full paper will be published elsewhere (DONTH--1982). 

D 
Two different reptationtimes, T~_T~, are possible for T E<T R 

According to the fluctuation dissipation theorem, the linear 
response to a spatial gradient of a variable is determined by 
homogeneous fluctuations of the conjugated variable in small 
subsystems. Fluctuation of the chemical potential is respon- 
sible for D, and fluctuation of the shear angle is responsible 
for ~. These fluctuations are very similar in a system of small 
spherical particles or in the reptation model for chains in 
fixed tubes. Therefore Einstein's relation between D and n is 
applicable there. (In fixed tubes, for instances: D t = DI/N = 
= kT~, D t and ~t are the diffusion coefficient and the mobility 
of the chain along the tube, respectively, N is a measure for 
the chain length proportional %o the mass of a macromolecule, 
k is Boltzmann's constant and T temperature.) 

But these two fluctuations are not equivalent in all cases. 
Consider the total movement of the chains, coiling and 
reptation simultaneously, in entangled systems for TE<T R 
(model of "fluctuating tubes"). Tube renewal means that a given 
chain has obtained a new environment consisting of other chain 
segments as before. This corresponds one-to-one to the fluctua- 
tion of the chemical potential as geometric coiling does not 
alter this "chemical" environment. 

But rearranging relevant for shear angles has topological 
and geometric aspects. Therefore, the viscosity is influenced 
by coiling and we have to estimate the effect of the E-point 
mobility on ~. If this effect is considerable then Einstein's 
relation ~s violated and two different reptation times are ob- 

D u rained, T R ~ T~, T R for diffusion and T R for viscosity. 
By the way, differences between relaxation times for dif- 

ferent variables are common for the dynamics in the glass tran- 
sition zone (see, e.g. DONTH 1981). Such a behavior seems to be 
typical for cooperative movements in the scale of 1 to some 
i0 ns_nometers. 

Rouse diffusion model for the mobility of E--points 
Fig. 2 shows a model that gives T E <T R for N>Nc, N c being 

a measure for the entanglement spacing. The E-point is symboli- 
cally represented by a ring. A similar picture is shown by BALL 
at ai.(1981). Assume two things, (i) the ring can slip along 
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Figure 2. E-point mobility due to Rouse modes of temporary 
parallel chains 

both chains provided that they are temporary parallel, and (ii) 
the touch of the two chains moves according to the Rouse model. 
This results in Pt~ vTn(ip/a) 4 if the Rouse modes of both chains 
are similar (p~pl ~p2; Tp and 1 are explained in Fig.2, a is 

P 
the length of a statistical segment, T o is an elementary jump 
time, so that D I = a2/To). Summing up over the Rouse mode in- 
dices p from 1 to N c we obtain the diffusion coefficient of an 
E-point, DE, as 

D~ ~ ~ / T  ~ D1(in Nc/Nc) , (11 

where (AXE) 2 = ZI~ and T= ~Tp. 
The continuity of the chains and the mean (averaging large 

regions) distemce between the E-points during their diffusion 
are preserved in the following model: Consider a chain as a 
bead-spring model but identify a bead with an E-point having 
the diffusion coefficient D E instead of kT/~ o for a segment of 
the original Rouse model. Then the characteristic time for the 
longest mode of the chain, consisting of N/N c new beads and 
having a "segment length"~c, is precisely T E. Thus 

T E ~ ToN2/in Nc~ N2 " (2) 

This means TE~<T ~ for long chains as T~N 3. Therefore, modifi- 
cations for T R are to be expected in comparison to the model of 
fixed tubes. 

Estimation of She viscosity exponent in entangled pelts and 
concentrated systems 

A simple phenomenological description of Brownian motion is 
used for estimating the viscosity. Details of the movement of 
E-points are not necessary for the calculations. 

Taking an elementary motion step of a chain segment, A x, as 
a sum of two parts, Ax = ~x E + Ax T, where E stands for the dif- 
fusion of E-points and T for the in-tube reptation. Consider 
time steps (labelled as i and j) in which the movements of the 
chain segments are mutually statistical independent, Axiax j = 0 

for i ~ j. Then the mobility is split into three parts as 
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The first term on the r.h.s, describes a pure in-tube motion 
and is interpreted as the reptation corresponding to the 
response of a diffusion experiment, D t = DI/N. 

The second term describes the pure diffusion of the E-points 
that does not alter the topology of the network. Neither D nor 
n is influenced by this term because mingling or flow of chains 
in entangled systems is only possible if the topology of the 
network is altered. 

The third term is interpreted as the mobility responsible 
for shear in entangled systems. Using AxiAx j = 0 again, mult- 

iplication by i = (~Ax~)/(ZAx~) gives (~(A(x~)2)" (~Ax~)/(~Ax~). 

Assuming statistical independence of (i) reptation mobility in- 
side the tube and (ii) shift of E-points we can factorize and 
obtain 

D t" (EAX~) / (EAxT) 

The bared quotient stands for the average of: the shift due to 
E-point diffusion, if the shift due to reptation has a certain 
value (remember Z~ii = ZAx-~I = 0~ If T E < T~, this quotient is 
a pure geometry-to-topology ratio of chains for long averaging 
times and should be of order Ro/Lt, L t being the curvilinear 
length (contour length) of the tube. Therefore, the total 
mobility as relevant for mingling and flow, expressed in the 

~t form of a "diffusion coefficient" D otalN (ZAxi)2 , is obtained 
from eq.(3) as 

~ ~ DtRo/L t ~total = Dt + 0 + , D ~ . (4) 

We obtain actually two different reptation times, 

D = L~/D t and T~ = L~ n L~/DtR ~ (5) T R = . 

In entangled polymer melts and concentrated systems R ~ N I/2 
and Lt~ N, therefore T~N3, T~N3.5, T~>T~, o 

The shear elastic modulus in the plateau zone, Go, does not 
depend on N in such systems. 

If the macromolecules are branched having long mobile side 
chains, then the branches can coil itself and we expect similar 
factors that influence the viscosity (as compared to the 
reptation in fixed tubes). ~or starlike polymers having arms of 
similar lengths, this factor would be approximately the same 

a n~ for all arms as well s for the whole star, namely D+/D L+/R. 
as above (~ N+I/2 in concentrated systems and ~(N/g)+i/2 in ~ 
semidiluted systems, see below). A computer simulation of three- 
arm stars in fixed tubes (EVANS 1981) results in TR~N 4 for 
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polymer melts, corresponding to ~N 4 and D~N -3. Using th~ 
bt ~ 4 5 and ~ N ~'5 factor for~ fl~ctuation tubes, we o ain T R N �9 n 

whereas ~R~N 4 and D ~N -3 are not affected by the coiling 
mobility. 

Semidilute solutions 
Let g be the number of monomers in one subunit of size 

and c the mass of monomeric units per unit volume, then for an 
ideal chain of these subunits 

~t ~ ( ~ / g ) ~  , 

From eq.(5) follows 

T~~ (N/g)3~ 3 

R o- ( N / g )  1 / 2  E , Dt~g/N~ �9 (7 )  

n .5~3 and ~R ~ ( N / g ) 3  " (8 )  

2 D ~, -- (i/~) 3 we obtain From D~ Ro/T R and q ~GoT using G O 

D ~  ( g i N ) 2 / ~  a n d  ~ ~ ( N / g ) 3 . 5  �9 ( 9 )  

Scaling arguments (DE GENNES 1976) such as g ~ c -5/4 and ~ ~ g3/5 
give then 

D~N-2c -1"75 and n ~ N3"5c 4"375 . (i0) 

This corresponds well to the experimental exponents as quoted 
by LEGER et al. (1981) 

-2.0 + 0.i , -i.7 + 0.i and 3./; -+ 0.i , /*.5 + 0.5 �9 (ii) 

Conclusions 
I think that the last two experimental exponents eq.(ll), 

the experimental exponent 3.4 • 0.1 for concentrated systems or 
polymer melts, and an experimental exponent near 4.5 in three- 
arm starlike polymers are an indication for the (topology con- 
serving) mobility of entanglement points in large scales (Ro). 
By the way, such a mobility could be of some importance for 
explaining lamellar crystallization structures in polymers. 
Fixed tubes enhance the topological difficulties of pulling an 
entangled chain into a regularly folded array. But fluctuating 
tubes (that means such a mobility equivalent to a sufficient 
high diffusion of E-points) diminish these difficulties to a 
reasonable degree without to sacrifice the idea of reptation. 
During crystallization, the E-points can be relegated to the 
amorphous interlayers between crystal lamellae until this 
process is stopped by a too high density of E-points there or 
by too long diffusion paths of E-points necessary for some 
thickness of the lamellae. 
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